
Cryptographic Foibles and Missteps

The misuse and Abuse of Good Security
Primitives (and How to do it Properly)

Joshua Hill
InfoGard Laboratories
josh-ccc@untruth.org

http://www.untruth.org

Pleased to meet you…
• B.S. Computer Science from Cal Poly
• M.S. Mathematics from Cal Poly
• Worked at InfoGard Labs for 10 years

– FIPS 140, CC, VISA PED, Postal, Systems,
etc

– Device and System security evaluations
– Reviewed hundreds of products

• Source code, documentation, etc.

What’s This Talk About?
• Good Primitives

– No proprietary algorithms
– No weak primitives
– High security assurance primitives

• Misunderstood
• Used incorrectly
• Abused

– “It is impossible to make things fool proof…”

• I’ve seen every problem here at least once

What is this talk NOT about?
• Snake Oil, Inc.

– “One Time Pad!”
– “1,000,000 bit keys!”
– “Completely Unbreakable!”
– “Revolutionary!”
– “Inverse N-dimensional permutation matrix routed

through the exhaust manifold and the main deflector
dish, with a twist of lemon.”

• Such schemes have no assurance of security
– New, secret and unproven systems are expected to

be flawed

I came here for an argument!
• Ciphers provide confidentiality
• Ciphers do not (in general) provide integrity
• It is not generally possible to identify

“gibberish” programmatically
• Example Modes

– ECB
– CBC
– CTR

Exact Change Only, Please
• ECB is the raw mode of the cipher
• A given data block always encrypts to

the same ciphertext block
– This can expose structure in the plaintext

• Any bit level change should flip half (on
average) of the other bits in the block
– Sounds great, but can you tell?

Order Matters!

• Blocks can be reordered
• Reordering or repetition of blocks can

change the message
• Any ciphertext encrypted with the same key

can be used as a source
• The security of the session is dependent on

the plaintext data formatting!

The Rosencrantz & Guildenstern Attack

ntz & Guildenste

rn.

my men Rosencra

loyal chattel:

evidence with my

. Please send me

my nephew Hamlet

se help me kill

of England Plea

ius To: The King

From: King Claud

loyal chattel:

my nephew Hamlet

evidence with my

. Please send me

rn.

ntz & Guildenste

my men Rosencra

se help me kill

of England Plea

ius To: The King

From: King Claud

Becomes

Cipher Block Chaining (CBC) Mode

• CBC Structure
– Uses Initialization Vector (IV)
– IV is XORed with plaintext before encryption
– Chains ciphertext output to next block’s IV

• Error propagation
– Plaintext block corresponding to modified

ciphertext is corrupted
– Second block has corruptions dependent on initial

corruption
– Third block is not corrupted

CBC Mode

Reference: NIST SP800-38a

CBC Shenanigans!
• An attacker can change any number of

targeted bits in a single plaintext block
• The prior block is corrupted

– Can you tell?
• What if the attacker can alter the IV?

– Change the first block of text
– No consequences!

Counter (CTR) Mode
• CTR Mode Structure

– Stream cipher like mode
– Uses encrypted counter to make keystream

• Ciphertext is keystream XOR plaintext
– Only uses cipher in encrypt mode

• Notes
– Counter must be unique
– Counter need not be secret but integrity should be

assured
– No error propagation

• Attacker can target bitwise changes anywhere with no
consequences

CTR Mode

Reference: SP800-38a

CTR Shenanigans!
• An attacker can change… anything.
• If an attacker can force a repeated

counter to be selected under the same
key…
– Step 1: Specify a repeated counter
– Step 2: Just XOR the ciphertexts together
– Step 3: Profit!

Postmortem (Integrity)
• Integrity desired, but no integrity protection is

included
– Without cryptographic integrity protection, you’re

left with data dependent “protections”

• Errors of assumption:
– “Cryptography” is not magic security pixie dust!
– “Confidentiality” isn’t the only goal out there!

Bonanza!
• RSA is fragile
• Fragile things must be used carefully
• Therefore, RSA must be used carefully.

Next up: Socrates is a man, baby!

RSA
• Encryption/Decryption

– Encrypt with public key
– Decrypt with secret key

• Signing/Verifying
– Sign with private key
– Verify with public key

• Signing looks like decryption, and verifying
looks like encryption (for RSA only)

• Strength based on the difficult of factoring

RSA Parameters
• Primes p, q
• Modulus n = pq
• Phi:
• e (the public exponent),

– Common selections are 3, 17, 65537
• d (the private exponent),
• The public key is (n, e)
• The private key is d

() (1)(1)n p qφ = − −

1mod ()ed nφ≡

gcd(, ()) 1e nφ =

Encrypt/Decrypt
• Encrypt

– The Message, m
• View the message as a positive integer
• m must be smaller than n

– Ciphertext, c
• Calculated:

• Decrypt
– Use the private key to decrypt

• Calculated:

modec m n=

1() modd e d edm c m m m m n′ ≡ ≡ ≡ ≡ ≡

We have… prime numbers?
• It is hard to generate numbers that are

definitely prime
– Techniques do exist, but they are slow

• There are an infinite number of primes…
– But, they get more sparse as numbers get bigger

• Generally we use probabilistic techniques for
finding primes
– Miller-Rabin Test with n rounds

• Generally cited lower bound of failure of (1/4)n

RSA Cake
• A problem with a small modulus

– If the same message is encrypted and sent to
e different distinct parties, the attacker can
decrypt the message

– This can be overcome through random
padding

RSA Sorbet
• Another problem with a small modulus

– If the recipient is forgiving when doing a
signature verification an attacker can forge
signatures

– PKCS#1 v1.5 padding
00 01 FF FF FF ... FF 00 ASN.1 HASH

– Number of padding ‘FF’ bytes is important!
– This can be overcome through strict

enforcement of padding format

RSA Pudding
• Things to watch for in key generation

– p, q may not actually be prime
– d may be “small” (half as long as n)
– Every key must have a unique modulus
– p, q should have “the right form”

• About the same size, but not too close to each
other

• p-1, p+1, q-1, q+1 should have large factors

Strawberry Tart
(… well, it’s got some RSA in it…)

• Important System Characteristics
– Use RSA keys for either sign/verify or

encrypt/decrypt, not both
• If you do both with the same key, you risk doing the

attackers job for them
– Only operate on properly padded messages!
– On encrypt/sign, do the padding yourself!
– On decrypt/verify, test the padding yourself!
– Never give back error messages that indicate why

the operation failed

Postmortem (RSA)
• Be afraid… Be very afraid!
• Use RSA only in well implemented,

evaluated protocols
• Use implementations of these protocols

made by cryptographic experts

Some Random Notes
• Most cryptographic processes involve

random values (e.g., keys)
• These values must not be guessable
• Strength should be quantifiable

– Uncertainty estimated as “entropy”

“True” RNGs
• True RNGs (TRNGs)

– Are difficult to characterize
– Fail subtly
– Are difficult to make dependable
– Are generally not full entropy

• Good practice is to pass “through” a good
Pseudo RNG (PRNG)
– Masks failures
– Good designs “accumulate” entropy
– Most designs are not good!

Entropy Sources
• Physical Sources

– Noisy diodes
– Ring oscillators
– Radioactive sources
– Quantum effects
– Air turbulence
– Audio / radio / CCD noise

• “Other” sources
– Big complex system behavior

• Scheduling patterns
• Large scale clock jitter (i.e. sampling jitter)
• Network packet arrival timing
• Booting randomness

– Human Sources (Typing / mouse activity)

Entropy Estimation
• A “Hard Problem”

– Not theoretically possible to completely
answer

• Entropy is always calculated with respect
to an observer

• Best analysis provides two approaches
– Entropy Estimate

• Based on a statistical model
– Entropy Bound Measurement

• Based on statistical testing

To quote Scott Adams…

You know you’re in trouble if there’s a Dilbert cartoon!

Obvious Issues
• Understand your entropy source

– Quantify your entropy (Thanks Netscape!)
– Know your enemy (and where they are in the system)

• Don’t just use a TRNG
• Entropy source should be periodically tested
• Make sure an attacker can’t track your PRNG state

– Seeds must have sufficient entropy to foil guessing
– Reseed frequently, but accumulate entropy

• Use a good PRNG design
– There aren’t many
– SP800-90 is an excellent source for designs
– Don’t deviate from good designs (thanks Microsoft!)

• Don’t allow your attacker to specify your seed values

Postmortem (Final)
• Know the schemes that you use

– Some requirements are there for a reason
– If you have a requirement, design for that

requirement
• Be careful with fragile systems

– Systems must be carefully designed to “cushion”
the fragile design

• Use professional help
– Use (well made) pre-implemented libraries
– Use well understood protocols

